The Oxysterol 24(S),25-Epoxycholesterol Attenuates Human Smooth Muscle–Derived Foam Cell Formation Via Reduced Low-Density Lipoprotein Uptake and Enhanced Cholesterol Efflux

نویسندگان

  • Michael M. Beyea
  • Samantha Reaume
  • Cynthia G. Sawyez
  • Jane Y. Edwards
  • Caroline O'Neil
  • Robert A Hegele
  • J Geoffrey Pickering
  • Murray W Huff
چکیده

BACKGROUND Foam cell formation by intimal smooth muscle cells (SMCs) inhibits the elaboration of extracellular matrix, which is detrimental to plaque stabilization. In the present study, we examined the lipoproteins and receptors involved in human SMC foam cell formation and investigated the ability of 24(S),25-epoxycholesterol [24(S),25-EC], an oxysterol agonist of the liver X receptor, to attenuate SMC foam cell formation. METHODS AND RESULTS Incubation of human internal thoracic SMCs with atherogenic lipoproteins demonstrated that low-density lipoprotein (LDL), but not oxidized or acetylated LDL, was the primary lipoprotein taken up, resulting in marked cholesteryl ester deposition (6-fold vs 1.8-fold; P<0.05; n=4). Exposure of SMCs to exogenous or endogenously synthesized 24(S),25-EC attenuated LDL uptake (-90% and -47% respectively; P<0.05; n=3) through decreased sterol regulatory element-binding protein-2 expression (-30% and -17%, respectively; P<0.001; n=3), decreased LDL receptor expression (-75% and -40%, respectively; P<0.05; n=3) and increased liver X receptor-mediated myosin regulatory light chain interacting protein expression (7- and 3-fold, respectively; P<0.05; n=4). Furthermore, exogenous 24(S),25-EC increased adenosine triphosphate-binding cassettes A1- and G1-mediated cholesterol efflux to apolipoprotein AI (1.9-fold; P<0.001; n=5) and high-density lipoprotein(3) (1.3-fold; P<0.05; n=5). 24(S),25-EC, unlike a nonsteroidal liver X receptor agonist, T0901317, did not stimulate sterol regulatory element-binding protein-1c-mediated fatty acid synthesis or triglyceride accumulation. 24(S),25-EC preserved the assembly of fibronectin and type I collagen by SMCs. CONCLUSIONS The oxysterol 24(S),25-EC prevented foam cell formation in human SMCs by attenuation of LDL receptor-mediated LDL uptake and stimulation of cholesterol efflux, restoring the elaboration of extracellular matrix. In contrast to T0901317, 24(S),25-EC prevented the development of a triglyceride-rich foam cell phenotype. (J Am Heart Assoc. 2012;1:e000810 doi: 10.1161/JAHA.112.000810.).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced synthesis of the oxysterol 24(S),25-epoxycholesterol in macrophages by inhibitors of 2,3-oxidosqualene:lanosterol cyclase: a novel mechanism for the attenuation of foam cell formation.

Oxysterols are key regulators of lipid metabolism and regulate gene expression by activating the liver X receptor (LXR). LXR plays a vital role in macrophage foam cell formation, a central event in atherosclerosis. It is known that addition of exogenous oxysterols to cultured macrophages activates LXR, leading to increased expression of ABCA1 and cholesterol efflux. In this study, we tested the...

متن کامل

Statins inhibit synthesis of an oxysterol ligand for the liver x receptor in human macrophages with consequences for cholesterol flux.

OBJECTIVE Cholesterol efflux from macrophages in the artery wall, a key cardioprotective mechanism, is largely coordinated by the nuclear oxysterol-activated liver X receptor, LXRalpha. We investigated the effect of statins on LXR target gene expression and cholesterol efflux from human macrophages. METHODS AND RESULTS In human macrophages (THP-1 cell line and primary cells), the archetypal s...

متن کامل

Berberine-induced inhibition of adipocyte enhancer-binding protein 1 attenuates oxidized low-density lipoprotein accumulation and foam cell formation in phorbol 12-myristate 13-acetate-induced macrophages.

The phagocytosis of oxidized low-density lipoprotein (oxLDL) by monocyte-derived macrophages and the subsequent differentiation of macrophages into foam cells are the key steps in atherogenesis. Scavenger receptors, such as CD36 and lectin-like low-density lipoprotein receptor 1 (LOX-1), are responsible for the uptake of oxLDL. Adipocyte enhancer-binding protein 1 (AEBP1) regulates many key gen...

متن کامل

SREBP-2 positively regulates transcription of the cholesterol efflux gene, ABCA1, by generating oxysterol ligands for LXR.

Cholesterol accumulation and removal are regulated by two different transcription factors. SREBP-2 (sterol-regulatory-element-binding protein-2) is best known to up-regulate genes involved in cholesterol biosynthesis and uptake, whereas LXR (liver X receptor) is best known for up-regulating cholesterol efflux genes. An important cholesterol efflux gene that is regulated by LXR is the ATP-bindin...

متن کامل

Mechanisms of dysregulation of low-density lipoprotein receptor expression in vascular smooth muscle cells by inflammatory cytokines.

OBJECTIVE Although inflammation is a recognized feature of atherosclerosis, the impact of inflammation on cellular cholesterol homeostasis is unclear. This study focuses on the molecular mechanisms by which inflammatory cytokines disrupt low-density lipoprotein (LDL) receptor regulation. METHODS AND RESULTS IL-1beta enhanced transformation of vascular smooth muscle cells into foam cells by in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2012